
Brotocol

Initial Report // August 21, 2025

Final Report // August 25, 2025

Security Audit
Report

Brotocol BridgeEndPoint

Smart Contract

Team Members

Krisytiyan Maslarov // Senior Security Auditor

2

Table of Contents

31.0 Scope

1.1 Technical Scope

42.0 Executive Summary

2.1 Schedule

2.2 Overview

43.0 Key Findings Table

54.0 Findings

4.1 No Enforcement of 18 Decimal Input Amount

4.2 Can Arbitrarily Mutate Orders With No Event EmittedsetUnwrapSent

4.3 & Don’t Adhere to Best PracticetransferToUnwrap nonReentrant

4.4 No Validation Against in as in minAmount setMinFeePerToken setApprovedToken

4.5 and Unscaled in and Functionsburn mint amount _transfer transferToUnwrap

105.0 Appendix A

5.1 Severity Rating Definitions

116.0 Appendix B

6.1 Thesis Defense Disclaimer

Defense

Security Audit Report

Brotocol

3

Defense is the security auditing arm of Thesis, Inc., the venture studio behind tBTC, Fold, Mezo, Acre, Taho,

Etcher, and Embody. At Defense, we fight for the integrity and empowerment of the individual by

strengthening the security of emerging technologies to promote a decentralized future and user freedom.

Defense is the leading Bitcoin applied cryptography and security auditing firm. Our team of security

auditors have carried out hundreds of security audits for decentralized systems across a number of

ecosystems including Bitcoin, Ethereum + EVMs, Stacks, Cosmos SDK, NEAR and more. We offer our

services within a variety of technologies including smart contracts, bridges, cryptography, node

implementations, wallets and browser extensions, and dApps.

Defense will employ the Defense Audit Approach and Audit Process to the in scope service. In the event

that certain processes and methodologies are not applicable to the in scope services, we will indicate as

such in individual audit or design review SOWs. In addition, Thesis Defense provides clear guidance on

successful Security Audit Preparation.

Technical Scope

Repository: https://github.com/Brotocol-xyz/xlink

Audit Commit: 84e3661dbc6cd4e0a16e37849112a6256d7c7bec

Verification Commit: 7cb7b5f766e3f208c62cefeac6d416e282ca45f0

File in Scope: BridgeEndPoint.sol

About Thesis Defense

Scope
Section 1.0

Defense

Security Audit Report

Brotocol

https://thesis.co/defense
https://thesis.co/defense#team
https://medium.com/thesis-defense/thesis-defense-audit-approach-75949aab90fb
https://medium.com/thesis-defense/thesis-defense-audit-approach-75949aab90fb
https://medium.com/thesis-defense/maximizing-security-audit-success-a-comprehensive-guide-to-audit-preparation-16d43b09715d
https://github.com/Brotocol-xyz/xlink/blob/feat/solidity/endpoint-remove-timelock/packages/contracts/bridge-solidity/contracts/BridgeEndpoint.sol

4

Schedule

This security audit was conducted from August 17, 2025 to August 20, 2025 by 1 senior security auditor for

a total of 3 person days.

Overview

The BridgeEndPoint smart contract is part of the Brotocol smart contract suite which is deployed on the

Mezo blockchain. All other deployed files had been audited previously, as a result, we have conducted an

security audit of BridgeEndPoint smart contract to ensure full audit coverage of the Brotocol’s Mezo

blockchain deployment.

Issues Severity Status

ISSUE #1 No Enforcement of 18 Decimal Input Amount

ISSUE #2 setUnwrapSent Can Arbitrarily Mutate

Orders With No Event Emitted

ISSUE #3 transferToUnwrap & nonReentrant Don’t

Adhere to Best Practice

ISSUE #4 No Validation Against minAmount in

setMinFeePerToken as in setApprovedToken

ISSUE #5 burn and mint Unscaled amount in

_transfer and transferToUnwrap Functions

Severity definitions can be found in Appendix A

Executive Summary
Section 2.0

Key Findings Table
Section 3.0

Defense

Security Audit Report

Brotocol

5

We describe the security issues identified during the security audit, along with their potential impact. We

also note areas for improvement and optimizations in accordance with best practices. This includes

recommendations to mitigate or remediate the issues we identify, in addition to their status before and

after the fix verification.

ISSUE#1

No Enforcement of 18 Decimal Input Amount

Location

BridgeEndpoint.sol#L227

BridgeEndpoint.sol#L167

Description

For tokens with decimals() < 18 there are certain scenarios where amount can be less than the

scaling factor and result in 0 after the calculation.

function transferFromFixed(

 ERC20 _token,

 address _from,

 address _to,

 uint256 _amount

) internal {

 if (_amount > 0)

 _token.safeTransferFrom(

 _from,

 _to,

 _amount / (10 ** (18 - _token.decimals()))

);

 }

Impact

Zero transfer on non-zero amount.

Recommendation

We recommend performing the calculation before transferring, and reverting if 0.

Verification Status

Given that no fix has been implemented, the Brotocol team must make users aware that transferring the

wrong decimal format could result in loss of funds.

Findings
Section 4.0

Defense

Security Audit Report

Brotocol

https://github.com/thesis/brotocol_xlink/blob/main/packages/contracts/bridge-solidity/contracts/BridgeEndpoint.sol#L227
https://github.com/thesis/brotocol_xlink/blob/main/packages/contracts/bridge-solidity/contracts/BridgeEndpoint.sol#L167

6

ISSUE#2

setUnwrapSent Can Arbitrarily Mutate Orders With No Event

Emitted

Location

BridgeEndpoint.sol#L319

Description

The Owner role can overwrite recipient , token , amount , and sent for any order with

registry.orderSent(orderHash) == true . No event is emitted.

Impact

The role can mark sent=true without an actual transfer, blocking finalizeUnwrap .

The role can change (token, amount) so a liquidity provider calling finalizeUnwrap later

may transfer unexpected assets (it pulls from caller).

Off-chain indexers lack visibility (no event).

Recommendation

We recommend that an event be emitted(e.g., SetUnwrapSentEvent(orderHash, recipient, token,

amount, sent)). We also recommend that role permissions be reduced to only allow sent to be

updated.

Verification Status

The Brotocol temam stated that this issue would be resolved in later development.

Defense

Security Audit Report

Brotocol

https://github.com/thesis/brotocol_xlink/blob/main/packages/contracts/bridge-solidity/contracts/BridgeEndpoint.sol#L319

7

ISSUE#3

transferToUnwrap & nonReentrant Don’t Adhere to Best

Practice

Location

BridgeEndpoint.sol#L236

Description

Modifiers execute in order. The Role/watchlist checks calls into the registry before the reentrancy

guard is set. If registry were compromised, it could attempt reentry earlier.

Impact

Defense-in-depth gap; not an immediate exploit with a correct registry, but an avoidable risk.

Recommendation

We recommend placing nonReentrant first:

external

nonReentrant

onlyApprovedRelayer

whenNotPaused

Defense

Security Audit Report

Brotocol

https://github.com/thesis/brotocol_xlink/blob/main/packages/contracts/bridge-solidity/contracts/BridgeEndpoint.sol#L236

8

ISSUE#4

No Validation Against minAmount in setMinFeePerToken as

in setApprovedToken

Location

BridgeRegistry.sol#L93 BridgeRegistry.sol#L127

Description

There is an inconsistency in the smart contract validation logic. The setApprovedToken function includes

validation to check that:

_require(minFee <= minAmount, Errors.MIN_FEE_GREATER_THAN_MIN_AMT);

However, the setMinFeePerToken function lacks this same validation check:

function setMinFeePerToken(

 address _token,

 uint256 _minFee

) external onlyOwner {

 minFeePerToken[_token] = _minFee;

 emit SetMinFeePerTokenEvent(_token, _minFee);

 }

Impact

minFeePerToken[_token] could be mistakenly set to values below the intended minimum threshold.

Recommendation

We recommend adding the same minAmount validation check to setMinFeePerToken to ensure

consistent security controls across both functions.

Defense

Security Audit Report

Brotocol

https://github.com/thesis/brotocol_xlink/blob/main/packages/contracts/bridge-solidity/contracts/BridgeRegistry.sol#L93
https://github.com/thesis/brotocol_xlink/blob/main/packages/contracts/bridge-solidity/contracts/BridgeRegistry.sol#L127

9

ISSUE#5

burn and mint Unscaled amount in _transfer and

transferToUnwrap Functions

Location

BridgeEndpoint.sol#L360 BridgeEndpoint.sol#L258

Description

In the _transfer function, the function attempts to burnFrom the msg.sender an amount as

received in the parameters - in 18 decimals:

 if (registry.burnable(token)) {

 IBurnable(token).burnFrom(msg.sender, amount.sub(feeDeducted)); // uses fixed

 }

The same issue exists in transferToUnwrap function:

if (registry.burnable(token)) {

 IBurnable(token).mint(address(this), amount);

 ERC20(token).transferFixed(recipient, amount);

 }

Impact

When trying to burn for example 100 USDC, the amount would incorrectly formed in 18 decimals -

100e18, which is a huge difference from 100e6 which is the 100 USDC in the token’s real decimals. This

would lead to the DoS of the function for such huge difference due to insufficient balance or allowance of

the msg.sender .

On the other hand, when minting, the tokens are also received in 18 decimals, so instead of minting 100e6

USDC, you are going to mint 100e18.

In both cases, the amount sent in the transferFixed function would be scaled to the real token

decimals and the the correct amount would be sent to the user or the pegAddress . However when

minting, the difference between 100e18 and 100e6 will remain locked in the smart contract.

function transferFixed(ERC20 _token, address _to, uint256 _amount) internal {

 if (_amount > 0)

 _token.safeTransfer(_to, _amount / (10 ** (18 - _token.decimals())));

 }

Recommendation

We recommend scaling to the correct decimals for every token before every burn or mint in order.

Verification Status

The Brotocol team stated that only tokens with the correct decimals will be added to the list of tokens that

are approved for burning/

Defense

Security Audit Report

Brotocol

https://github.com/thesis/brotocol_xlink/blob/main/packages/contracts/bridge-solidity/contracts/BridgeEndpoint.sol#L360
https://github.com/thesis/brotocol_xlink/blob/main/packages/contracts/bridge-solidity/contracts/BridgeEndpoint.sol#L258

10

Severity Rating Definitions

At Thesis Defense, we utilize the Immunefi Vulnerability Severity Classification System - v2.3.

Severity Definition

Manipulation of governance voting result deviating from voted

outcome and resulting in a direct change from intended effect of

original results

Direct theft of any user funds, whether at-rest or in-motion, other

than unclaimed yield

Direct theft of any user NFTs, whether at-rest or in-motion, other

than unclaimed royalties

Permanent freezing of funds

Permanent freezing of NFTs

Unauthorized minting of NFTs

Predictable or manipulable RNG that results in abuse of the

principal or NFT

Unintended alteration of what the NFT represents (e.g. token URI,

payload, artistic content)

Protocol insolvency

Theft of unclaimed yield

Theft of unclaimed royalties

Permanent freezing of unclaimed yield

Permanent freezing of unclaimed royalties

Temporary freezing of funds

Temporary freezing NFTs

Smart contract unable to operate due to lack of token funds

Enabling/disabling notifications

Griefing (e.g. no profit motive for an attacker, but damage to the

users or the protocol)

Theft of gas

Unbounded gas consumption

Contract fails to deliver promised returns, but doesn’t lose value

We make note of issues of no severity that reflect best practice

recommendations or opportunities for optimization, including, but

not limited to, gas optimization, the divergence from standard

coding practices, code readability issues, the incorrect use of

dependencies, insufficient test coverage, or the absence of

documentation or code comments.

Appendix A
Section 5.0

Defense

Security Audit Report

Brotocol

https://immunefi.com/immunefi-vulnerability-severity-classification-system-v2-3/

11

Thesis Defense Disclaimer

Thesis Defense conducts its security audits and other services provided based on agreed-upon and

specific scopes of work (SOWs) with our Customers. The analysis provided in our reports is based solely

on the information available and the state of the systems at the time of review. While Thesis Defense

strives to provide thorough and accurate analysis, our reports do not constitute a guarantee of the

project’s security and should not be interpreted as assurances of error-free or risk-free project operations.

It is imperative to acknowledge that all technological evaluations are inherently subject to risks and

uncertainties due to the emergent nature of cryptographic technologies.

Our reports are not intended to be utilized as financial, investment, legal, tax, or regulatory advice, nor

should they be perceived as an endorsement of any particular technology or project. No third party should

rely on these reports for the purpose of making investment decisions or consider them as a guarantee of

project security.

Links to external websites and references to third-party information within our reports are provided solely

for the user’s convenience. Thesis Defense does not control, endorse, or assume responsibility for the

content or privacy practices of any linked external sites. Users should exercise caution and independently

verify any information obtained from third-party sources.

The contents of our reports, including methodologies, data analysis, and conclusions, are the proprietary

intellectual property of Thesis Defense and are provided exclusively for the specified use of our

Customers. Unauthorized disclosure, reproduction, or distribution of this material is strictly prohibited

unless explicitly authorized by Thesis Defense. Thesis Defense does not assume any obligation to update

the information contained within our reports post-publication, nor do we owe a duty to any third party by

virtue of making these analyses available.

Appendix B
Section 6.0

Defense

Security Audit Report

Brotocol

	Security Audit Report
	Brotocol
	Brotocol BridgeEndPoint Smart Contract

	Table of Contents
	About Thesis Defense
	1
Scope
	Technical Scope

	2
Executive Summary
	Schedule
	Overview

	3
Key Findings Table
	4
Findings
	No Enforcement of 18 Decimal Input Amount
	Location
	Description
	Impact
	Recommendation
	Verification Status

	setUnwrapSent Can Arbitrarily Mutate Orders With No Event Emitted
	Location
	Description
	Impact
	Recommendation
	Verification Status

	transferToUnwrap & nonReentrant Don’t Adhere to Best Practice
	Location
	Description
	Impact
	Recommendation

	No Validation Against minAmount in setMinFeePerToken as in setApprovedToken
	Location
	Description
	Impact
	Recommendation

	burn and mint Unscaled amount in _transfer and transferToUnwrap Functions
	Location
	Description
	Impact
	Recommendation
	Verification Status

	5
Appendix A
	Severity Rating Definitions

	6
Appendix B
	Thesis Defense Disclaimer

